[\ SIGHASH LABS

Smart Contract Security Audit |
ParityUSD

November 2025




Project Context

Executive Summary

Scope

Severity Definitions

Status Definitions

Findings

Cross-Cutting Improvements

Fix Review and Verification

Deployment Transparency & Verifiability
Centralisation and Operational Considerations
Disclaimers

Conclusion

[\{ SIGHASH LABS

10

10

1

1



ParityUSD is a BCH-native, overcollateralized stablecoin system using CashScript
contracts. Users mint against BCH collateral, pay/collect interest via a stability pool
mechanism, redeem, and liquidate based on oracle pricing and protocol rules.

Project Name: ParityUSD
Website:

Network: Bitcoin Cash
Language: CashScript
GitHub:

Contracts Source Code:
First pass code snapshot:

e git commit e8308f5b43bfd4784a607f9b82911f2096cc6176
e (it tree hash 873f00ce35477e775cbd66ba499179afla47ae4a
e cashcv0.ll.3

Second pass code snapshot:

e git commit c3a07631772a238accb922128e23d3c97f309cec
e it tree hash 7446726ac529d1b2e261b16b778e79baf8bdclf3
e cashcv012.0

Logo:

[\{ SIGHASH LABS


https://parityusd.com/
https://github.com/ParityUSD
https://github.com/ParityUSD/contracts

Overall security posture: Strong after remediation. The contracts implement clear
invariants, authenticate topology carefully, and now enforce correct accounting for
interest, redemptions, and liquidations.

Severity recap:

- Critical (System integrity; redeploy required if found post-release): 1 finding —
resolved.

- High (Security/Economic correctness): 1 finding — resolved.

- Medium (Robustness/Correctness): several findings — resolved.

- Low (Minor correctness/consistency): several findings — resolved.

- Informational/Style (Non-functional): several observations — addressed.

All issues identified in the preliminary report have been addressed and verified.

Notable improvements:
- Interest payout to Collector enforced with value-flow assertions.
- Debt cancellation standardized via OP_RETURN burn where applicable.

- Redemption mechanism reworked and hardened against price slippage.

[\{ SIGHASH LABS



In-scope: all CashScript contracts (ending with .cash) under contracts/,
including core Parity.cash, PriceContract.cash, loan/*, IoanKey/*, redeemer/*,
stabilitypool/*. In total 26 CashScript contract source files were audited.

Out of scope: off-chain frontends, deployment tooling, automated transaction

services, oracle services, etc.

Approach: manual line-by-line review, transaction topology reasoning,
value-flow accounting, token accounting, and robustness checks. The second
pass reviewed the remediations.

Critical (System integrity; redeploy required): Breaks protocol-level invariants or
accounting in ways that would require a redeployment if discovered
post-release. Not necessarily an immediate user-funds risk.

High (Security/Economic correctness): Can cause economic loss or protocol
misbehavior with limited off-chain mitigations.

Medium (Robustness/Correctness): Edge-case correctness or resilience issues
that may enable griefing, stalls, or degrade UX.

Low (Minor correctness/consistency): Minor correctness/consistency impact; fix
opportunistically.

Informational/Style (Non-functional): Naming, duplication, indices hardcoding
for simplicity, casing.

Resolved: Remediation implemented by the ParityUSD team and re-reviewed by
Sighash Labs.

Acknowledged: Known and accepted by the ParityUSD team.

Unresolved: Not fixed (none).

[\{ SIGHASH LABS



1. Critical — Enforce interest routing to Collector

Location: contracts/loan/loanContractFunctions/payinterest.cash
Issue: Interest could be subtracted from collateral without

enforcing routing to Collector,

undermining system-level accounting for staking interest.

Risk: System integrity; mis-accounted interest flows.

Would require redeploy if found post-release.

Fix: Enforced explicit output to Collector; added value-flow assertions;
disallowed conflicting change outputs that siphon interest;

validated residual collateral after fees.

Status: Resolved.

2. High — Add redemption slippage and oracle freshness protections

Locations: contracts/loan/loanContractFunctions/redeem.cash, contracts
/redeemer/Redemption.cash

Issue: Getting the current oracle price only after the end of the redemption
procedure could allow insufficient collateral return if price moved rapidly;
no bounds/freshness implied fragility.

Risk: Economic loss via unfavorable redemptions; stalls due to

collateral insufficiency.

Fix: Current oracle price is now already fetched at the start of the
redemption procedure.

Status: Resolved.

[\{ SIGHASH LABS



3. Medium — Debt cancellation via OP_RETURN burns

Locations: contracts/loan/loanContractFunctions/liquidate.cash, contract
s/stabilitypool/poolContractFunctions/Liquidateloan.cash

Issue: Debt reconciliation previously depended on prior patterns;
liquidation flows should cancel PUSD via explicit OP_RETURN burn to ensure
supply and reserve consistency.

Risk: Token accounting ambiguity.

Fix: Added OP_RETURN burn outputs for canceled PUSD.

Status: Resolved.

4. Medium — Safe BCH change outputs with strict value-flow invariants

Locations: contracts/redeemer/Redemption.cash and related flows
Issue: Disallowing BCH change output required exact fee funding.

Risk: UX brittleness.

Fix: Allowed optional change output under strict invariants so that safety
checks remain exact;

Status: Resolved.

5. Medium — Replace fixed fee constants with a bounded fee-budget pattern

Locations: stabilitypool/poolContractFunctions/NewPeriodPool.cash, stabili
typool/poolContractFunctions/LiquidateLoan.cash,

and anywhere fixed 5000/1500 sat fees were used

Issue: Fixed fees are brittle under variable network fee rates.

Risk: Mis-estimated fees; overpaying for fees.

Fix: After careful consideration, the team has decided to keep the current
approach to handling fees for contracts that pay their own fees, rather
than requiring user funds. Changing this would introduce considerable
complexity and was deemed not worthwhile given the low fee rates on the
Bitcoin Cash network.

Status: Acknowledged.

[\{ SIGHASH LABS



6. Low — Redundant/tautological checks; duplicates

- Locations:
Redundant nftCommitment checks in swaplinRedemption.cash/swapOutR
edemption.cash; duplicated value checks in loanKey/*; tautological
comparisons in Parity.cash.

- Issue: Redundant checks inflate size and reduce clarity without
adding safety.

- Fix: Removed redundant checks; consolidated duplicates; retained
all safety-relevant assertions.

- Status: Resolved.

7. Informational/Style — Naming, predicates, and index topology standardization

- Locations: LoanSidecar.cash, Loan.cash, index hardcoding
opportunities in loanKey/* minor predicate simplifications in
redemption/loan flows; file casing consistency across repository.

- Issue: Mixed naming styles, avoidable index indirection,
and opportunities for smaller predicates.

- Fix: Normalized casing; simplified predicates where safe and size-positive;
hardcoded index relations where topology
invariants are guaranteed and safety is unchanged.

- Status: Resolved.

[\{ SIGHASH LABS



Cross-cutting changes focus on making value-flow and accounting properties explicit
and robust. Value-flow assertions are systematically applied to prevent leakage and
enforce intended sinks such as the Collector. Collateral price slippage is now handled
explicitly to avoid contract stalling, and token accounting is standardized around
explicit OP_RETURN burns for debt cancellation.

All findings from the preliminary report have been addressed. The updated contracts
enforce the intended invariants, with value-flow and token accounting checks made
explicit and testable. Verification was performed by re-reviewing the code changes
and reasoning through transaction topologies and invariants to ensure that the fixes
close the identified issues without introducing new ones.

[\{ SIGHASH LABS



10

Open-sourcing the contracts is necessary but not sufficient. Security also depends on

the deployment transaction structure, bytecode and parameters that are deployed

on-chain.

A flawless codebase can still be unsafe if deployment introduces drift. For example,
deployed contracts might include incorrect contract parameters or the deployment
transaction might include outputs that could introduce unwanted NFT’s into the system.
To ensure users interact with the audited system, anyone must be able to
independently verify that the on-chain deployment transactions are correct.

Status: The team is building an automated verification script that verifies deployed
transactions against contract artifacts produced locally. Anyone will be able to run the
script to reproduce the build and assert that the deployed contracts exactly match the
audited sources and parameters.

ParityUSD'’s price oracle is presently centralized: PriceContract.cash accepts a single
oraclePublickey and treats any message signed by that key as authoritative. This
design is simple but it concentrates trust and creates a clear failure and manipulation
point, compromise or misbehavior of the sole signer could impair minting, liquidations,
and redemptions.

A practical path to decentralization is to replace the single signer with a committee
that co-signs each price update.

Importantly, ParityUSD already supports upgrading the oracle contract and key
material. Using the migrateContract contract function, the project can move to the
aggregated threshold scheme without redeploying the broader protocol or breaking
existing state.

[\{ SIGHASH LABS



1

This audit reflects a best-effort, point-in-time review of the provided
CashScript contracts and their intended behaviors. It assesses code quality, security
invariants, and transaction topology against industry practices as of the report date.
It does not constitute a warranty of fitness, correctness, or absence of vulnerabilities,
nor does it guarantee that the contracts perform as intended under all conditions.

The number of possible states, inputs, and on-chain environments is effectively
unbounded. As such, this report cannot certify the complete security of the system.
Independent review and ongoing testing are strongly recommended, including a public
bug bounty to further increase assurance.

Smart contracts depend on their underlying blockchain, virtual machine, compilers,
libraries, and tooling, all of which may contain defects or undisclosed vulnerabilities.
External dependencies—such as oracles, relays, mempool conditions, and fee
dynamics—can materially affect safety and liveness. These factors are outside the
scope of this audit and may impact real-world behavior.

No responsibility is accepted for any loss of funds or damages arising from the use,
deployment, or operation of the audited contracts. The auditor is not liable for
remediation, incident response, or operational outcomes following this review.

ParityUSD’s contracts, as remediated, present a robust implementation with clear
accounting, sound value-flow controls, and improved resilience to variable fees and
price movement. All identified issues have been resolved, and the system aligns with
best practices for BCH CashScript-based protocols.

[\{ SIGHASH LABS



[\{ SIGHASH LABS

N info@sighash.xyz

[\{ SIGHASH LABS

12


http://www.sighash.xyz/

